Crystal Growth and Real Structure Effects of the First Weak 3D Stacked Topological Insulator Bi14Rh3I9
نویسندگان
چکیده
A detailed account of the crystal-growth technique and real structure effects of the first 3D weak topological insulator Bi14Rh3I9 = [(Bi4Rh)3I][BiI4]2 is given. As recently shown, this compound features decorated-honeycomb [(Bi4Rh)3I] 2+ sheets with topologically protected electronic edge-states and thereby constitutes a new topological class. Meticulous optimization of the synthesis protocol, using thermochemical methods, yielded high-quality crystals of Bi14Rh3I9 suitable for the experimental characterization of the structural as well as topological properties. Insightful information about the crystal structure, its pseudosymmetry, and the thereby caused stacking disorder and twinning phenomena, obtained by X-ray diffraction and TEM studies, is crucial for an adequate theoretical modeling of coupling between the topologically nontrivial sheets. As demonstrated here, Bi14Rh3I9 is not an exotic anomaly, but a stable, structurally well-defined bulk material, which can be used for gaining experimental knowledge about the yet poorly investigated class of weak 3D topological insulators. It could equally foster the synthesis and understanding of related compounds with the bismuth-based decorated-honeycomb sheets.
منابع مشابه
Correlation between topological band character and chemical bonding in a Bi14Rh3I9-based family of insulators
Recently the presence of topologically protected edge-states in Bi14Rh3I9 was confirmed by scanning tunnelling microscopy consolidating this compound as a weak 3D topological insulator (TI). Here, we present a density-functional-theory-based study on a family of TIs derived from the Bi14Rh3I9 parent structure via substitution of Ru, Pd, Os, Ir and Pt for Rh. Comparative analysis of the band-str...
متن کاملSuperconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak &strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic &crystal structures for HfTe5 w...
متن کاملMirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI.
Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even num...
متن کاملImproved drain current characteristics of tunnel field effect transistor with heterodielectric stacked structure
In this paper, we proposed a 2-D analytical model for electrical characteristics such as surface potential, electric field and drain current of Silicon-on-Insulator Tunnel Field Effect Transistor (SOI TFETs) with a SiO2/High-k stacked gate-oxide structure. By using superposition principle with suitable boundary conditions, the Poisson’s equation has been solved to model the channel r...
متن کاملخواص ساختاری، الکتریکی و مغناطیسی منگنایتLa1-xCaxMnO3
Manganites are considered as subbranches of condensed matter physics with a great wealth of physical mechanisms. In this investigation we have studied the structural, electrical and magnetic properties of a series of La1-xCaxMnO3 manganite with x=0.1, 0.2, …,0.5. We observed that the crystal structure of this manganite, with small dopping, at room temperature is orthorhombic and by increasi...
متن کامل